



The line x + 2y = 2, when x = 0 then y = 1 and when x = 2 then y = 0. Then it passes through the points (0, 1), (2, 0).

The line -x + 3y = 6, when x = 0 then y = 2 and when x = 3 then y = 3. Then it passes through the points (0, 2), (3, 3).

The line x - y = 4, when x = 0 then y = -4 and when x = 4 then y = 0.

Then it passes through the points (0, -4), (4, 0).

Then, we determine the feasible domain M of vertices: A(2,0), B(4,0), C(9,5), D(0,2) and E(0,1), see the figure.

The equation of the objective function x + 2y = 0, when x = 2 then y = -1. Then it passes through the points (0, 0) and (2, -1) and can be traced as in figure.

Since the coefficients of the objective function f are 1 and 2. Then the point(1, 2) lies in the first quarter which is the increasing direction of f. Then, the last point of intersection of the feasible domain M and the objective function f is the vertex C(9, 5) which is the optimal solution. The optimal value of f is 19.

(2)The standard form of this problem is:

minimize
$$f = x - y - z$$

s.t $2x - y + z + s_1 = 4$
 $x + 2y + 2z + s_2 = 10$
 $-x + y - z + s_3 = 8$, x, y, z, $s_1, s_2, s_3 \ge 0$

The steps of the simplex method goes as follows:

B.V	X	У	Z	S 1	s2	s 3	Solu
S 1	2	-1	1	1	0	0	4
s2	1	2	2	0	1	0	10
	-1	1	-1	0	0	1	8
\$3							
f	-1	1	1	0	0	0	0
Z	2	-1	1	1	0	0	4
s2	-3	4	0	-2	1	0	2
\$ 3	1	0	0	1	0	1	12
f	-3	2	0	-1	0	0	- 4
Z	5/4	0	1	1/2	1/4	0	9/2
У	-3/4	1	0	-1/2	1/4	0	1/2
s 3	1	0	0	1	0	1	12
f	-3/2	0	0	0	-1/2	0	-5

This is the optimum case. Then the optimal solution is:

 $(x^*, y^*, z^*) = (0, 1/2, 9/2)$ or (0, 5, 0) with optimal value f *= -5

(3)The standard form of this problem is:

maximize f = x + y + z - u

s.t $x-y+z-u+s_1 = 4$

$$x + y - z + u - t + v = 6$$
, $x, y, z, u, s_1, t, v \ge 0$

where s_1 are slack variable, t is surplus variable and v is artificial variable. Let w = v. Then, the objective of phase one is:

w + x + y - z + u - t = 6

The steps of phase one goes as table:

B.V	X	У	Z	u	t	S 1	V	Solu
s 1	1	-1	1	-1	0	1	0	4
v	1	1	-1	1	-1	0	1	6
f	-1	-1	-1	1	0	0	0	0
W	1	1	-1	1	-1	0	0	6
Х	1	-1	1	-1	0	1	0	4
v	0	2	-2	2	-1	-1	1	2
f	0	-2	0	0	0	1	0	4
W	0	2	-2	2	-1	-1	0	2
Х	1	0	0	0	-1/2	1/2	1/2	5
У	0	1	-1	1	-1/2	-1/2	1/2	1
f	0	0	-2	2	-1	0	1	6
W	0	0	0	0	0	0	-1	0

This is the end of phase one. Phase two starts with the following table which is formed by deleting the column of v and the w-row.

B.V	Х	у	Z	u	t	S 1	Solu
Х	1	0	0	0	-1/2	1/2	5
У	0	1	-1	1	-1/2	1/2	1
f	0	0	-2	2	-1	0	6

There is no optimal solution because the coefficient of z in f-equation is negative but the pivoting operation can not be cared.

The feasible solution is (x, y, z, u) = (5,1, 0, 0) with value $f^* = 6$.